Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let G be the centroid of a-triangle ABC. If $\overrightarrow{AB}=\overrightarrow{a},\overrightarrow{AC}=\overrightarrow{b}$ , then the bisector $\overrightarrow{AB}$ in terms of vectors $\overrightarrow{a}$ and $\overrightarrow{b}$ is

Vector Algebra

Solution:

Take $A$ as origin. Then position vectors of $A$, $B$, $C$ are $\vec{0}$, $\vec{a}$, $\vec{b}$ respectively.
image
$\therefore $ position vector of centroid is
$\frac{0+\vec{a}+\vec{b}}{3}$ i.e., $\frac{\vec{a}+\vec{b}}{3}$
$\therefore \overrightarrow{AG}=\frac{\vec{a}+\vec{b}}{3}$