Q.
Let $g :(0, \infty) \rightarrow R$ be a differentiable function such that
$\int\left(\frac{x(\cos x-\sin x)}{e^{x}+1}+\frac{g(x)\left(e^{x}+1-x e^{x}\right)}{\left(e^{x}+1\right)^{2}}\right) d x=\frac{x g(x)}{e^{x}+1}+c$
for all $x >0$, where $c$ is an arbitrary constant. Then.
Solution: