Q.
Let for x∈R.
f(x)=x+|x|2 and g(x)={x,x<0x2,x≥0
Then area bounded by the curve y=(f∘g)(x) and the lines y=0,2y−x=15 is equal to
Solution:
2y−x=15
A=3∫0(x+152−x2)dx+12×152×15
x24+15x2−x33|30+2254
=94+452−9+2254=99−36+2254
=2884=72
