Q.
Let for i = 1, 2, 3, $p_i(x)$ be a polynomial of degree 2 in x, $p'_i(x)$ and $p''_i(x)$ be the first and second order derivatives of $p_i(x)$ respectively. Let,
$A\left(x\right) = \begin{bmatrix}p_{1}\left(x\right)&p_{1}'\left(x\right)&p_{1}''\left(x\right)\\ p_{2}\left(x\right)&p_{2}'\left(x\right)&p_{2}''\left(x\right)\\ p_{3}\left(x\right)&p_{3}'\left(x\right)&p_{3}''\left(x\right)\end{bmatrix} $
and $B\left(x\right)=\left[A\left(x\right)\right]^{T}A\left(x\right)$. Then determinant of $B\left(x\right)$ :
Determinants
Solution: