Q.
Let for $i = 1, 2, 3, p_{i}\left(x\right)$ be a polynomial of degree 2 in x, $p_{i}'\left(x\right)$ and $p_{i}''\left(x\right)$ be the first and second order derivatives of $p_{i}\left(x\right)$ respectively. Let,
$A\left(x\right) = \begin{bmatrix}p_{1}\left(x\right)&p_{1}'\left(x\right)&p_{1}''\left(x\right)\\ p_{2}\left(x\right)&p_{2}'\left(x\right)&p_{2}''\left(x\right)\\ p_{3}\left(x\right)&p_{3}'\left(x\right)&p_{3}''\left(x\right)\end{bmatrix}$
and $B\left(x\right) = \left[A\left(x\right)\right]^{T} A\left(x\right).$ Then determinant of $B\left(x\right)$ :
Solution: