Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $f (x) = x |x|$ and $g(x) = sinx .$
Statement-1 : $gof$ is differentiable at $x = 0$ and its derivative is continuous at that point.
Statement-2 : $gof$ is twice differentiable at $x = 0.$

AIEEEAIEEE 2009Continuity and Differentiability

Solution:

$f \left(x\right) = x \left|x\right|$ and $g\left(x\right) = sin\,x$
$gof \left(x\right)=sin\left(x\left|x\right|\right)=$ $ \begin{cases} -sin^2\,x^2 , & \text{$x<0$} \\[2ex] sin\,x^2 , & \text{$x\ge0$} \end{cases}$
$\therefore (gof)'(x) = \begin{cases} -2x\,cos^2, & \text{$x<0$} \\[2ex] 2x\,cos^2, & \text{$x\ge0$} \end{cases}$
Clearly, $L(gof )'(0) = 0 = R(gof )'(0)$
$∴$ gof is differentiable at $x = 0$ and also its derivative is continuous at $x = 0$
Now, $\therefore (gof)''(x) = \begin{cases} -2x\,cos^2+4x^2\,sin\,x^2, & \text{$x<0$} \\[2ex] 2x\,cos^2-4x^2\,sin\,x^2, & \text{$x\ge0$} \end{cases}$
$∴L(gof )"(0) = −2$ and $R(gof )"(0) = 2$
$∴L(gof )"(0) ≠ R(gof )"(0)$
$∴ gof(x)$ is not twice differentiable at $x = 0.$