Q.
Let $f \left(x\right)=x^{3}-x^{2}-3x-1, g\left(x\right)=\left(x+1\right)a$ and $h (x)=\frac{f (x)}{g (x)}$ where h is a rational function such that:
(i) it is continuous everywhere except when $x = - 1$,
(ii) $\displaystyle\lim_{x\to\infty} h \left(x\right)=\infty$ and
(iii) $\displaystyle\lim_{x\to-1}h(x)=\frac{1}{2}$
The value of $h (1)$ is ______
Continuity and Differentiability
Solution: