Q.
Let $f(x)=x^{3}-x^{2}-3 x-1, g(x)=(x+1) a$ and $h(x)=\frac{f(x)}{g(x)}$
where $h$ is a rational function such that:
(i) it is continuous everywhere except when $x=-1$,
(ii) $\displaystyle\lim _{x \rightarrow \infty} h(x)=\infty$ and
(iii) $\displaystyle\lim _{x \rightarrow-1} h(x)=\frac{1}{2}$.
The value of $h(1)$ is
Continuity and Differentiability
Solution: