Q. Let $f(x)=\frac{\left(x^3-2 x^2+x\right)\left(\pi^x-1\right)+\left(1+x^2+x^4\right)}{\left(1-x+x^2\right)}$ and $g(x)=\sin ^2 x$ If $\left.\displaystyle\sum_{ r =0}^1 \frac{ d ^2 g }{ dx ^2}\right|_{ x = f ^{\prime}( r )}= a (\cos \alpha)(\cos \beta)$, where $a , \alpha, \beta \in N$, then the value of $( a +\alpha+\beta)$ is equal to
Continuity and Differentiability
Solution: