Q. Let $f\left(x\right)=-x^{2}+x+p,$ where $p$ is a real number. If $g\left(x\right)=\left[f \left(x\right)\right]$ and $g\left(x\right)$ is discontinuous at $x=\frac{1}{2},$ then $p$ cannot be (where $\left[.\right]$ represents the greatest integer function)
NTA AbhyasNTA Abhyas 2020Continuity and Differentiability
Solution: