Thank you for reporting, we will resolve it shortly
Q.
Let $f \left(x\right)=x^{2}-x+1$, $x \ge\frac{1}{2}$, then the solution of the equation $f(x) = f^{-1}(x)$ is
Relations and Functions - Part 2
Solution:
Let $y=x^{2}-x+1$
$\Rightarrow x=\frac{1 \pm\sqrt{1-4\left(1-y\right)}}{2}\because x \ge\frac{1}{2}$
$\therefore x=\frac{1}{2}+\sqrt{y-\frac{3}{4}}$
$\Rightarrow f ^{-1}\left(x\right)=\frac{1}{2}+\sqrt{x-\frac{3}{4}}$
Now, $x^{2}-x+1=\frac{1}{2}+\sqrt{x-\frac{3}{4}}$
$\Rightarrow x=1$ (By checking the given possibilities)