Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $f(x)=x^2+(a+2) x+a^2-a+2$. Given $a, \alpha, \beta(\alpha<\beta)$ be real numbers and $\alpha, \beta$ are the roots of the equation $f ( x )=0$.
If both roots of the equation $f ( x )=0$ lies in interval $(0, \infty)$ then range of $a$, is

Complex Numbers and Quadratic Equations

Solution:

Given, $x^2+(a+2) x+a^2-a+2=0$.
Now, $D >0 \Rightarrow \frac{2}{3}< a <2$ .....(i)
Product of roots $>0 \Rightarrow a ^2- a +2>0$, which is true $\forall a \in R$ .....(ii)
and sum of roots $>0 \Rightarrow-(a+2)>0 \Rightarrow a<-2$.....(iii)
$\therefore $ (i) $\cap($ ii $) \cap($ iii $) \Rightarrow a \in \phi$.