Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $f(x)=\frac{x^{2}-9 x+20}{x-[x]}($ where $[x]$ is the greatest integer not greater than $x$ ), then

Limits and Derivatives

Solution:

$=\displaystyle\lim _{x \rightarrow 5^{-}} \frac{x^{2}-9 x+20}{x-[x]}$
$=\displaystyle\lim _{x \rightarrow 5^{-}} \frac{(x-5)(x-4)}{x-4}$
$=\displaystyle\lim _{x \rightarrow 5^{-}}(x-5)=0$
$=\displaystyle\lim _{x \rightarrow 5^{-}} \frac{x^{2}-9 x+20}{x-[x]}$
$=\displaystyle\lim _{x \rightarrow 5^{+}} \frac{(x-5)(x-4)}{x-5}$
$=\displaystyle\lim _{x \rightarrow 5^{+}}(x-4)=1$