Q. Let $f(x)=\frac{x^2-2 a x+b}{b x^2-2 a x+1}$. If the equation $f(x)=m$ has two real and distinct roots $\forall m \in R$, then the range of $a$ is $(-\infty, p) \cup(q, \infty)$. Find the value of $2\left(p^2+q^2\right)$.
Complex Numbers and Quadratic Equations
Solution: