Q.
Let $f(x)=\begin{cases} \frac{\sin(x - [x])}{x - [x]}, & x \in (-2, -1) \\\max \{2 x, 3[|x|]\} & |x| < 1 \\ 1 & \text { otherwise }\end{cases}$
where [ $t$ ] denotes greatest integer $\leq t$. If $m$ is the number of points where $f$ is not continuous and $n$ is the number of points where $f$ is not differentiable, then the ordered pair $( m , n )$ is :
Solution: