Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $ f(x) = \sin x - \tan x $ , $ x \in (0,\pi/2) $ , then tangent drawn to the curve $ y = f(x) $ at any point will

AMUAMU 2015Application of Derivatives

Solution:

Given, $ y=\sin x-\tan x$
$\Rightarrow \frac{d y}{d x} =\cos x-\sec ^{2} x $
$\Rightarrow \frac{d^{2} y}{d x^{2}} =-\sin x-2 \sec ^{2} x \tan x< 0, $
$ \forall x \in(0, \pi / 2)$
Hence, the tangent drawn to the curve will lie above the curve.