Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $f ( x )=\sin\, x$ and $g ( x )=\log _{ e }| x | .$ If the ranges of the composition functions fog and gof are $R _{1}$ and $R _{2}$, respectively, then

Relations and Functions - Part 2

Solution:

We have fog $(x)=f(g(x))=\sin \left(\log _{e}|x|\right)$.
$\log _{ e }| x |$ has range $R$, for which $\sin \left(\log _{ e }| x |\right) \in[-1, 1]$
Therefore, $R _{1}=\{ u :-1 \leq u \leq 1\}$
Also, gof $(x)=g(f(x))=\log _{e}|\sin\, x|$
$\because 0 \leq|\sin \,x | \leq 1$ or $-\infty < \log _{ e }|\sin \,x | \leq 0$
or $R _{2}=\{ v :-\infty< v \leq 0\}$