Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $f(x)=\sin ^{-1}(2 x-1)+\cos ^{-1}\left(2 \sqrt{x-x^2}\right)+\tan ^{-1}\left(\frac{1}{1+\left[x^2\right]}\right)$ where $[k]$ denotes greatest integer less than or equal to $k$.
Column I Column II
P $f \left(\frac{1}{6}\right)$ is equal to 1 $\frac{\pi}{6}$
Q $f \left(\frac{3}{4}\right)$ is equal to 2 $\frac{\pi}{4}$
R $\sin ^{-1}(\tan ( f (1)))$ is equal to 3 $\frac{\pi}{3}$
S $ \displaystyle\sum_{ r =1}^{10} f \left(\frac{ r }{20}\right)$ is equal to 4 $\frac{7 \pi}{12}$
5 $\frac{5 \pi}{2}$

Inverse Trigonometric Functions

Solution:

$ ( x )=\sin ^{-1}(2 x -1)+\cos ^{-1}\left(2 \sqrt{ x - x ^2}\right)+\tan ^{-1}\left(\frac{1}{1+\left[ x ^2\right]}\right)$
Domain of $f(x)=[0,1]$
$f(x)=\begin{cases}0+\frac{\pi}{4}=\frac{\pi}{4}, & x \in\left[0, \frac{1}{2}\right] \\2 \sin ^{-1}(2 x-1)+\frac{\pi}{4}, & x \in\left(\frac{1}{2}, 1\right) \\\pi+\tan ^{-1}\left(\frac{1}{2}\right), & x=1\end{cases}$
Now, verify the options.