Q.
Let $f(x)=\sin ^{-1}(2 x-1)+\cos ^{-1}\left(2 \sqrt{x-x^2}\right)+\tan ^{-1}\left(\frac{1}{1+\left[x^2\right]}\right)$ where $[k]$ denotes greatest integer less than or equal to $k$.
Column I
Column II
P
$f \left(\frac{1}{6}\right)$ is equal to
1
$\frac{\pi}{6}$
Q
$f \left(\frac{3}{4}\right)$ is equal to
2
$\frac{\pi}{4}$
R
$\sin ^{-1}(\tan ( f (1)))$ is equal to
3
$\frac{\pi}{3}$
S
$ \displaystyle\sum_{ r =1}^{10} f \left(\frac{ r }{20}\right)$ is equal to
4
$\frac{7 \pi}{12}$
5
$\frac{5 \pi}{2}$
Column I | Column II | ||
---|---|---|---|
P | $f \left(\frac{1}{6}\right)$ is equal to | 1 | $\frac{\pi}{6}$ |
Q | $f \left(\frac{3}{4}\right)$ is equal to | 2 | $\frac{\pi}{4}$ |
R | $\sin ^{-1}(\tan ( f (1)))$ is equal to | 3 | $\frac{\pi}{3}$ |
S | $ \displaystyle\sum_{ r =1}^{10} f \left(\frac{ r }{20}\right)$ is equal to | 4 | $\frac{7 \pi}{12}$ |
5 | $\frac{5 \pi}{2}$ |
Inverse Trigonometric Functions
Solution: