Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $f(x) = \begin{cases} \text{max} \{|x| , x^2\}, & |x | \le 2 \\ 8 - 2 |x| & 2 < |x| \le 4 \end{cases} $
Let $S$ be the set of points in the interval $(-4,4)$ at which $f$ is not differentiable. Then $S$:

JEE MainJEE Main 2019Continuity and Differentiability

Solution:

$\begin{cases} 8 + 2x, & -4 \le x < - 2 \\ x^2, & -2 \le x \le - 1 \\ |x|, & -1 < x < 1 \\ x^2 , & 1 \le x \le 2 \\ 8 - 2x, & 2 < x \le 4 \end{cases} $
$f( x )$ is not differentiable at $x =\{-2,-1,0,1,2\}$
$ \Rightarrow S =\{-2,-1,0,1,2\} $

Solution Image