Thank you for reporting, we will resolve it shortly
Q.
Let $f(x)=\frac{e^x}{1+x^2}$ and $g(x)=f^{\prime}(x)$ then
Application of Derivatives
Solution:
$ \Theta g(x)=f^{\prime}(x)=\frac{\left(1+x^2\right) e^x-2 x e^x}{\left(1+x^2\right)^2}=\frac{(x-1)^2 e^x}{\left(1+x^2\right)^2} $
$g^{\prime}(x)=\frac{(x-1)\left(x^3-3 x^2+5 x+1\right) e^x}{\left(x^2+1\right)^3}$
here $x^3-3 x^2+5 x+1$ is strictly increasing and has a root in $(-1,0)$.