Thank you for reporting, we will resolve it shortly
Q.
Let f(x)=cos(2tan−1sin(cot−1√1−xx)), 0<x<1. Then:
JEE MainJEE Main 2021Inverse Trigonometric Functions
Solution:
f(x)=cos(2tan−1sin(cot−1√1−xx)) cot−1√1−xx=sin−1√x
or f(x)=cos(2tan−1√x) =costan−1(2√x1−x) f(x)=1−x1+x
Now f′(x)=−2(1+x)2
or f′(x)(1−x)2=−2(1−x1+x)2
or (1−x)2f′(x)+2(f(x))2=0