Q.
Let $f(x)=\cos ^{-1}\left(\frac{2 x}{1+x^2}\right), g(x)=\cot ^{-1}\left(\frac{2 x}{x^2-1}\right)$ where $x \in(-1,1)$. If area bounded by the curves $y=f(x)+g(x)$ and $y=\pi x^2$ is A then find the value of $[A]$.
[Note: $[ K ]$ denotes greatest integer less than or equal to $K$.]
Application of Integrals
Solution: