Q. Let $f(x)=\left\{\begin{array}{ll}\frac{1+\cos x}{(\pi-x)^{2}} \cdot \frac{\sin ^{2} x}{\ln \left(1+\pi^{2}-2 \pi x+x^{2}\right)} & x \neq \pi \\ \lambda & x=\pi\end{array}\right.$ is continuous at $x=\pi $ , then $\lambda $ is equal to
NTA AbhyasNTA Abhyas 2020Continuity and Differentiability
Solution: