Thank you for reporting, we will resolve it shortly
Q.
Let $ f(x) $ be defined for all $ x>0 $ and be continuous, let $ f(x) $ satisfy $ f\left( \frac{x}{y} \right)=f(x)-f(y) $ for all $ x,\,\,y, $ then:
Jharkhand CECEJharkhand CECE 2003
Solution:
Let $f(x)=\log (x), x>0 $
$\therefore $ It is continuous for every positive value of $x$ .
$ \therefore $ $f\left(\frac{x}{y}\right)=\log \left(\frac{x}{y}\right)$
$=\log (x)-\log (y)=f(x)-f(y) $
$\therefore $ Option is correct.