Q. Let $f ( x )$ be a twice differentiable function and has no critical point and $g(x)=(x+6)^{2009}(x+1)^{2010}(x+2)^{2011}(x-3)^{2012}(x-4)^{2013}(x-5)^{2014}$ be such that $f(x)+g(x) f^{\prime}(x)+f^{\prime \prime}(x)=0$ then function $h(x)=f^2(x)+\left(f^{\prime}(x)\right)^2$ $\left(A^*\right)$ is monotonic increasing in $(-2,4)$ $\left( B ^*\right)$ has exactly 3 point of inflection. $\left(C^*\right)$ has exactly two points local maxima. $\left(D^*\right)$ has a negative point of local minima.
Application of Derivatives
Solution: