Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $f(x)$ be a non-constant twice differentiable function defined on $(-\infty, \infty)$ such that $f(x)=f(1-x)$ and $f^{\prime}\left(\frac{1}{4}\right)=0$ Then

JEE AdvancedJEE Advanced 2008

Solution:

$( A , B , C , D )$
$f ( x )= f (1- x )$
Put $x =1 / 2+ x$
image
$f \left(\frac{1}{2}+ x \right)= f \left(\frac{1}{2}- x \right)$
Hence $f(x+1 / 2)$ is an even function or $f(x+1 / 2) \sin x$ is an odd function.
Also, $f'(x)=-f'(1-x)$ and for $x=1 / 2$, we have $f'(1 / 2)=0$.
Also, $\int\limits_{1 / 2}^{1} f (1- t ) e ^{\sin \pi t} d t =-\int\limits_{1 / 2}^{0} f ( y ) e ^{\sin \pi y } dy$
(obtained by putting, $\left.1- t = y \right)$.
Since $f '(1 / 4)=0, f '(3 / 4)=0$.
Also $f '(1 / 2)=0$
$\Rightarrow f ''( x )=0$ atleast twice in $[0,1]$ (Rolle's Theorem)