Q. Let $f \left( x\right) = \alpha\left( x\right)\beta\left( x\right) \gamma \left( x\right)$ for all real x, where $\alpha\left(x\right), \beta\left(x\right)$ and $\gamma \left( x\right)$ are differentiable functions of x. If $f ' \left(2\right) = 18 f \left(2\right),\alpha' \left(2\right) = 3\alpha\left(2\right), \beta' \left(2\right) = -4\beta\left(2\right)$ and $\gamma'\left(2\right) = k\gamma \left(2\right)$ , then the value of k is
Limits and Derivatives
Solution: