Q.
Let $f(x) = \begin{cases}
a (x) \sin \frac{\pi \ x }{2} & \text{for } x \neq 0 \\
-(n+1)/2 & \text{for} x = 0
\end{cases} $
where $\alpha (x) $ is such that $\displaystyle\lim_{x \to 0} |\alpha (x) | = \infty $
Then the function $f(x)$ is continuous at $x = 0$ if $\alpha (x) $ is chosen as
UPSEEUPSEE 2017
Solution: