Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $f(x)=1+x$, $g(x)=x^{2}+x+1$, then $(f+g) (x)$ at $x=0$ is

Relations and Functions

Solution:

We have, $ f \left(x\right)=1+x$,
$g\left(x\right)=x^{2}+x+1$
$\therefore \left(f+g\right)\left(x\right)=f\left(x\right)+g\left(x\right)$
$=1+x+x^{2}+x+1
=x^{2}+2x+2$
$\therefore \left(f+g\right)\left(0\right)=0^{2}+2\left(0\right)+2$
$=2$