Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $f \left(x\right) = \sqrt{1+x^{2}},$ then

Relations and Functions

Solution:

$f \left(xy\right) = \sqrt{1+x^{2}y^{2}}$
$f \left(x\right) f \left(y\right) = \sqrt{1+x^{2}}\sqrt{1+y^{2}} = \sqrt{1+x^{2}y^{2}+x^{2}+y^{2}}$
$\ge \sqrt{1+x^{2}y^{2}} = f \left(xy\right)$
$\therefore \quad f \left(xy\right) \le f \left(x\right) f \left( y\right)$