Q.
Let $f(x)=(1-x)^{2} \sin ^{2} x+x^{2}$ for all $x \in I R,$ and let $g(x)=\int\limits_{1}^{x}\left(\frac{2(t-1)}{t+1}-\ln t\right) f(t) d t$ for all $x \in(1, \infty)$.
Consider the statements:
$P :$ There exists some $x \in$ such that $f(x)+2 x=2\left(1+x^{2}\right)$
$Q :$ There exists some $x \in $ such that $2 f(x)+1=2 x(1+x)$ Then
AIEEEAIEEE 2012
Solution: