Q. Let $f : R \,\to\, R$ be defined by $ f(x) = \begin{cases} k-2x , & \quad \text{if } x\,\leq\,-1\\ 2x+3, & \quad \text{if }x > \,-1\\ \end{cases} $. If $f$ has a local minimum at $x = -1$ , then a possible value of $k$ is
Application of Derivatives
Solution: