Q.
Let $f: R \rightarrow R$ be a function defined by :
$f(x)= \begin{Bmatrix}\max \left\{t^{3}-3 t\right\} ; x \leq 2 \\t \leq x \\x^{2}+2 x-6 ; 2 < x < 3 \\{[x-3]+9 ; 3 \leq x \leq 5} \\2 x+1 ; x > 5\end{Bmatrix}$
Where $[ t ]$ is the greatest integer less than or equal to $t$. Let $m$ be the number of points where $f$ is not differentiable and $I =\int\limits_{-2}^{2} f( x ) d x .$ Then the ordered pair $( m , I )$ is equal to :
Solution: