Q. Let $f : R \rightarrow R$ be a function defined by $f(x)=\left(2\left(1-\frac{x^{25}}{2}\right)\left(2+x^{25}\right)\right)^{\frac{1}{50}}$. If the function $g(x)=f(f(f(x)))+f(f(x))$, the the greatest integer less than or equal to $g(1)$ is ______
Solution: