Q.
Let $f: R^{+} \rightarrow R$ be a differentiable function satisfying
$f(x)=e+(1-x) \ln \left(\frac{x}{e}\right)+\int\limits_1^x f(t) d t \text { for all } x \in R^{+} .$
The $x$-intercept of normal drawn to the curve $y=f(x)$ at point $P$ where $y=f(x)$ crosses the line $x =1$, is equal to
Differential Equations
Solution: