Q. Let $f : R \rightarrow R ^{+}$be a differentiable function satisfying $f ^{\prime}( x )=2 f ( x ) \forall x \in R$. Also $f (0)=1$ and $g(x)=f(x) \cdot \cos ^2 x$. If $n_1$ represent number of points of local maxima of $g(x)$ in $[-\pi, \pi]$ and $n_2$ is the number of points of local minima of $g ( x )$ in $[-\pi, \pi]$ and $n _3$ is the number of points in $[-\pi, \pi]$ where $g ( x )$ attains its global minimum value, then find the value of $\left( n _1+ n _2+ n _3\right)$.
Application of Derivatives
Solution: