Q. Let $f : R \rightarrow R ^{+}$be a differentiable function satisfying $f ^{\prime}( x )=2 f ( x ) \forall x \in R$. Also $f (0)=1$ and $g(x)=f(x) \cdot \cos ^2 x$. If $n_1$ represent number of points of local maxima of $g(x)$ in $[-\pi, \pi]$ and $n_2$ is the number of points of local minima of $g ( x )$ in $[-\pi, \pi]$ and $n _3$ is the number of points in $[-\pi, \pi]$ where $g ( x )$ attains its global minimum value, then find the value of $\left( n _1+ n _2+ n _3\right)$.
Application of Derivatives
Solution:
$g^{\prime}(x)=2 \cos x e^{2 x}(\cos x-\sin x)$
$\mathrm{g}^{\prime}(\mathrm{x})=0 \Rightarrow \mathrm{x}=\frac{-3 \pi}{4}, \frac{\pi}{4}, \frac{\pi}{2}, \frac{-\pi}{2}$
$\therefore $ Points of maxima are $\frac{-3 \pi}{4}, \frac{\pi}{4}$ and $\pi$ points of minima are $-\pi, \frac{-\pi}{2}, \frac{\pi}{2}$
and global minimum value occurs at $\frac{ \pm \pi}{2}$ which is zero.
Hence $\mathrm{n}_{1}=3, \mathrm{n}_{2}=3, \mathrm{n}_{3}=2 \Rightarrow \mathrm{n}_{1}+\mathrm{n}_{2}+\mathrm{n}_{3}=8$.