Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $f: R \rightarrow R$ be a continuous function. Then $\displaystyle\lim _{x \rightarrow \frac{\pi}{4}} \frac{\frac{\pi}{4} \int\limits_{2}^{\sec ^{2} x} f(x) d x}{x^{2}-\frac{\pi^{2}}{16}}$ is equal to:

JEE MainJEE Main 2021Limits and Derivatives

Solution:

$\displaystyle\lim _{x \rightarrow \frac{\pi}{4}} \frac{\frac{\pi}{4} \int\limits_{2}^{\sec ^{2} x} f(x) d x}{x^{2}-\frac{\pi^{2}}{16}}$
$\displaystyle\lim _{x \rightarrow \frac{\pi}{4}} \frac{\pi}{4} \cdot \frac{\left. f \left(\sec ^{2} x \right) \cdot 2 \sec x \cdot \sec x \tan x \right]}{2 x }$
$\displaystyle\lim _{ x \rightarrow \frac{\pi}{4}} \frac{\pi}{4} f \left(\sec ^{2} x \right) \cdot \sec ^{3} x \cdot \frac{\sin x }{ x }$
$\frac{\pi}{4} f (2) \cdot(\sqrt{2})^{3} \cdot \frac{1}{\sqrt{2}} \times \frac{4}{\pi}$
$\Rightarrow 2 f (2)$