Q.
Let $f:\left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \rightarrow R$ be defined as
$f(x)=\begin{cases}
(1+|\sin x|)^{\frac{3 a}{\sin x \mid}} & , & -\frac{\pi}{4} < x < 0 \\
b & , & x=0 \\
e^{\cot 4 x / \cot 2 x} & , & 0 < x < \frac{\pi}{4}
\end{cases}$
If $f$ is continuous at $x=0$, then the value of $6 a +b^{2}$ is equal to:
Solution: