Q. Let $f(n)=\displaystyle\lim _{x \rightarrow 0}\left(\left(1+\sin \frac{x}{2}\right)\left(1+\sin \frac{x}{2^{2}}\right) \ldots .\left(1+\sin \frac{x}{2^{n}}\right)\right)^{1 / x} .$ If $\displaystyle\lim _{n \rightarrow \infty} f(n)=\frac{3 e}{k}$ then find $k$
Limits and Derivatives
Solution: