Q.
Let $f,g : R\rightarrow R$ be two functions defined by
$f(x) = \begin{cases} x \,&sin\left(\frac{1}{x}\right), x\ne0, & \text{} \\[2ex] 0, & x=0& \text{} \end{cases}$ and $g(x) = xf(x)$
Statement I : $f$ is a continuous function at $x = 0$.
Statement II : $g$ is a differentiable function at $x = 0$.
Solution: