Q.
Let $f , g : R \rightarrow R$ be functions defined by
$f(x)=\begin{cases}{[x]} & , \quad x<0 \\ |1-x| & , \quad x \geq 0\end{cases}$ and
$g(x)= \begin{cases}e^{x}-x & , x<0 \\ (x-1)^{2}-1 & , \quad x \geq 0\end{cases}$
where $[ x ]$ denote the greatest integer less than or equal to $x$. Then, the function fog is discontinuous at exactly :
Solution: