Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $f$ be the function defined by
$f(x)=\begin{cases}\frac{x^{2}-1}{x^{2}-2|x-1|-1}, & x \neq 1 \\
1 / 2, & x=1 \end{cases}$

MHT CETMHT CET 2020

Solution:

For $x<1, f(x)=\frac{x^{2}-1}{x^{2}+2 x-3}=\frac{x+1}{x+3}$
$\therefore \lim\limits _{x \rightarrow 1^{-}} f(x)=\frac{1}{2}$
For $x>1, f(x)=\frac{x^{2}-1}{x^{2}-2 x+1}=\frac{x+1}{x-1}$
$\therefore \lim\limits _{x \rightarrow 1^{+}} f(x)=\infty$
$\therefore $ The function is not continuous at $x=1$.