Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $f$ be a strictly decreasing function with range $[a, b]$ then domain of the function $f$ is

Relations and Functions - Part 2

Solution:

Given, $a \le f(x) \le b, f$ is strictly decreasing
$\therefore f^{-1}(a) \ge f^{-1} f(x) \ge f^{-1} (b)$
$\Rightarrow f^{-1} (b) \le x \le f^{-1} (a)$
$\Rightarrow x \in [f^{-1} (b) , f^{-1}(a)]$