Q.
Let ' $f$ ' be a quadratic polynomial such that
$f (-1- x )= f (-1+ x ) \forall x \in R \text { and }$
$(f(1)-5)^2+(f(-1)-1)^2=f^{\prime}(-1)$
list I
list II
P
The value of $\left[\sin ^{-1}( f ( x ))\right]$ whenever defined, is equal to
1
0
Q
The value of $[1+\operatorname{sgn}( f ( x ))]$ is equal to
2
1
R
The value of $\left[\tan ^{-1}\left(\frac{1}{ f ( x )}\right)\right]$ is equal to
3
2
S
The value of $\left[2 \cot ^{-1}\left[\frac{1}{2^{f(x)}}\right]\right]$ is equal to
4
3
[Note: [y] denotes greatest integer less than or equal toy. ]
list I | list II | ||
---|---|---|---|
P | The value of $\left[\sin ^{-1}( f ( x ))\right]$ whenever defined, is equal to | 1 | 0 |
Q | The value of $[1+\operatorname{sgn}( f ( x ))]$ is equal to | 2 | 1 |
R | The value of $\left[\tan ^{-1}\left(\frac{1}{ f ( x )}\right)\right]$ is equal to | 3 | 2 |
S | The value of $\left[2 \cot ^{-1}\left[\frac{1}{2^{f(x)}}\right]\right]$ is equal to | 4 | 3 |
Inverse Trigonometric Functions
Solution: