Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let ' $f$ ' be a quadratic polynomial such that
$f (-1- x )= f (-1+ x ) \forall x \in R \text { and }$
$(f(1)-5)^2+(f(-1)-1)^2=f^{\prime}(-1)$
list I list II
P The value of $\left[\sin ^{-1}( f ( x ))\right]$ whenever defined, is equal to 1 0
Q The value of $[1+\operatorname{sgn}( f ( x ))]$ is equal to 2 1
R The value of $\left[\tan ^{-1}\left(\frac{1}{ f ( x )}\right)\right]$ is equal to 3 2
S The value of $\left[2 \cot ^{-1}\left[\frac{1}{2^{f(x)}}\right]\right]$ is equal to 4 3
[Note: [y] denotes greatest integer less than or equal toy. ]

Inverse Trigonometric Functions

Solution:

$f ( x )= a ( x +1)^2+ b$
$f(1)=5, f(-1)=1 $
$f(x)=(x+1)^2+1=x^2+2 x+2$
(P) $\left. f ( x ) \geq 1 \Rightarrow\left[\sin ^{-1}( f ( x ))\right]\right]=\left[\frac{\pi}{2}\right]=1$
(Q) $[1+\operatorname{sgn}(f(x))]=2$
(R) $\left[\tan ^{-1}\left(\frac{1}{ f ( x )}\right)\right]=0$
(S) $\left[2 \cot ^{-1}\left[\frac{1}{2^{f(x)}}\right]\right]=3$.