Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $f$ and $g$ be differentiable functions on $R$. If $f (6)=3, f ^{\prime}(6)=6, g (6)=1$ and $g ^{\prime}(6)=4$, then $\left(\frac{f g}{f-g}\right)^{\prime}(6)$ is equal to

Continuity and Differentiability

Solution:

$\because\left(\frac{f g}{f-g}\right)^{\prime}=\frac{(f-g)\left(f^{\prime} g+f^{\prime}\right)-f g\left(f^{\prime}-g^{\prime}\right)}{(f-g)^2} $
$\left(\frac{f g}{f-g}\right)^{\prime}(6)=\frac{2(6+12)-3(2)}{2^2}=\frac{30}{4}=\frac{15}{2} $