Q.
Let $f : \left[-2, 3\right] \to [0, \infty)$ be a continuous function such that $f \left(1-x\right)=f \left(x\right) for all x \in \left[-2, 3\right].$
If $R_{1} $ is the numerical value of the area of the region bounded by $y = f \left(x\right), x = -2, x = 3$ and the axis of x and $R_{2} =\int\limits_{-2}^{3} x \, f \left(x\right) dx,$ then:
Solution: