Q.
Let $f_{1}: R \rightarrow R , f_{2}:[0, \infty) \rightarrow R, f_{3}: R \rightarrow R$ and $f_{4}: R \rightarrow[0, \infty)$ be defined by
$f_{1}(x)=\begin{cases}|x| & \text { if } & x<0 \\ e^{x} & \text { if } & x \geq 0\end{cases} ; f_{2}(x)=x^{2} ; f_{3}(x)=\begin{cases}\sin x & \text { if } & x<0 \\ x & \text { if } & x \geq 0\end{cases}$ and $f_{4}(x)=\begin{cases}f_{2}\left(f_{1}(x)\right) & \text { if } & x<0 \\ f_{2}\left(f_{1}(x)\right)-1 & \text { if } & x \geq 0\end{cases}$
List I
List II
P
$f_4$ is
1
onto but not one-one
Q
$f_3$ is
2
neither continuous nor one-one
R
$f_2 o f_1$ is
3
differentiable but not one-one
S
$f_2$ is
4
continuous and one-one
List I | List II | ||
---|---|---|---|
P | $f_4$ is | 1 | onto but not one-one |
Q | $f_3$ is | 2 | neither continuous nor one-one |
R | $f_2 o f_1$ is | 3 | differentiable but not one-one |
S | $f_2$ is | 4 | continuous and one-one |
JEE AdvancedJEE Advanced 2014
Solution: