Q.
Let $f : \left[-1,3\right] \rightarrow R$ be defined as
$f(x) = \begin{cases} |x|+[x] , &-1 \le x < 1 \\ x +|x | , & 1 \le x < 2 \\ x+|x| ,& 2\le x \le 3' \end{cases} $
where [t] denotes the greatest integer less than or equal to t. Then, $ f $ is discontinuous at:
Solution: