Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $f \left(1\right)=-2$ and $f' \left(x\right) \ge4.2 for 1\le x\le6.$ The possible value of $f (6)$ lies in the interval :

JEE MainJEE Main 2013Limits and Derivatives

Solution:

Given $f (1) = - 2$ and $f' \left(x\right) \ge 4.2 \, for \, 1\le x\le6$
Consider $f' \left(x\right) =\frac{f \left(x+h\right)-f\left(x\right)}{h}$
$\Rightarrow f\left(x+h\right)-f\left(x\right)=f' \left(x\right). h \ge\left(4.2\right)h$
$So, \, f \left(x+h\right)\ge f\left(x\right)+\left(4.2\right)h$
put x= 1 and h = 5, we get
$f\left(6\right)\ge f\left(1\right)+5\left(4.2\right)\, \Rightarrow \quad f\left(6\right)\ge19$
Hence $ f\left(6\right) lies \, in [19, \infty)$