Q. Let $f:[0, \infty) \rightarrow[0, \infty)$ be a function defined by $f(x)=x^2+\left(k^2-3 k+2\right) x+k^2-k$. If $f(x)$ is both injective and surjective, then the number of integers in the range of $k$ is
Relations and Functions - Part 2
Solution: